Python爬虫实战,通过爬取严选文胸数据获得“不可告人”的秘密

[复制链接]
作者: 沉默的砖 | 时间: 2021-2-23 10:09:56 | python图文教程|
0 36
发表于 2021-2-23 10:09:56| 显示全部楼层 |阅读模式

作为情侣以及准情侣之间的礼物,能不能花点心思,送点不一样的,比如内衣……

有的男性朋友会跳出来骂了:说得好听,你知道送花多难吗?这种隐秘的数据,又不好直接开口问,又不能直接丈量,万一送错了不得把美好的事情搞砸了?

钢铁直男的想法总是这么赤果果,其实想知道妹子喜欢什么颜色的内衣,尺码是怎样的,不一定需要直接询问,可以有各种方法可以获取到,这里就不展开这个话题了。

为了探究妹子们的平常对内衣的普遍选择,我连夜爬取了网易严选关键词为“文胸”的商品评论数据,从中挑选了几个代表性的属性来做分析。

爬取数据

巧妇难为无米之炊,为了分析数据,我们首先要获取数据,在本次行动中,我们需要获取的是文胸的评论数据,我们从结果出发,一步步来细化我们的需求和步骤。

首先,我们在网易严选的搜索框输入关键词“文胸”,出来文胸的产品列表界面:

搜索结果我们随便点开一个商品,点击“评论”,就可以看到如下信息:

评论信息我们分析请求列表,就可以很容易地发现评论数据是他通过 https://you.163.com/xhr/comment/listByItemByTag.json 这个请求来获取的。然后我们逐个地排除请求的参数,最终发现 itemId 和 page 两个参数是必须的,其他的参数都可以不传。

itemId 是指产品的ID,page 不用说了,就是指的请求的页码。所以我们要获取评论数据的前提是获取到对应的产品ID。

在详情页的请求中是可以获取到产品ID的,但是我们想获取搜索结果的产品ID列表就必须去搜索结果页寻找。 产品列表同样的,我们在搜索界面的请求分析中,找到了 http://you.163.com/xhr/search/search.json 这个请求,逐个分析请求参数后发现,我们只需要 keyword 和 page 两个参数即可。

有了这个分析的前提,我们就可以着手写代码来获取数据了。代码如下:

# 获取产品列表
def search_keyword(keyword):
    uri = 'https://you.163.com/xhr/search/search.json'
    query = {
        "keyword": keyword,
        "page": 1
    }
    try:
        res = requests.get(uri, params=query).json()
        result = res['data']['directly']['searcherResult']['result']
        product_id = []
        for r in result:
            product_id.append(r['id'])
        return product_id
    except:
        raise

# 获取评论
def details(product_id):
    url = 'https://you.163.com/xhr/comment/listByItemByTag.json'
    try:
        C_list = []
        for i in range(1, 100):
            query = {
                "itemId": product_id,
                "page": i,
            }
            res = requests.get(url, params=query).json()
            if not res['data']['commentList']:
                break
            print("爬取第 %s 页评论" % i)
            commentList = res['data']['commentList']
            C_list.extend(commentList)
            time.sleep(1)

        return C_list
    except:
        raise


product_id = search_keyword('文胸')
r_list = []
for p in product_id:
    r_list.extend(details(p))

with open('./comments.txt', 'w') as f:
    for r in r_list:
        try:
            f.write(json.dumps(r, ensure_ascii=False) + '\n')
        except:
            print('出错啦')

这里我只抓取了第一页的产品来分析每个产品的前100页的评论数据。我将获取到的评论数据放在文件中存储。预览如下: 存储数据### 分析数据

抓取完数据后,我们就可以进入探索环节了,我想从颜色、尺码、评论三个角度去看看有没有什么惊奇地发现。

我们来看看数据结构的特点:

{
  "skuInfo": [
    "颜色:灰紫色套头套装",
    "尺码:L(80BC-85AB)"
  ],
  "frontUserName": "葡****字",
  "frontUserAvatar": "http://yanxuan.nosdn.127.net/2a4479567d935ca3a88d7ea0e425ebc8",
  "content": "好穿!很舒服",
  "createTime": 1593738737271,
  "picList": [],
  "commentReplyVO": null,
  "memberLevel": 4,
  "appendCommentVO": null,
  "star": 5,
  "itemId": 3989517
}

这是一条评论数据,我们可以看到颜色和尺码都放在 skuInfo 里面,评论是放在 content 字段里面。同时,我们多翻一些数据就可以发现,这个颜色和尺码并不是统一的,不同的产品可能有不同的格式。

经过总结,对于颜色,我可以根据特点去除噪音,获取到统一的格式。而对于尺码,我只能将其分为两类:一类是以S、M、L、XL、XXL这种标识的比较通用的尺码,另一类是类似于75B这种比较准确的尺码。

我将颜色和尺码都做成柱状图来展示,而评论就用词云来展示。最终的效果图如下: 颜色分布 尺寸分布 评论词云 这个颜色有点出乎我的意料,我预想的最受欢迎的颜色应该是黑色,结果浅肤色排在了第一,黑色排在了第二,不过相差不大。如果数据量再多一些的话,可能黑色会反超,成为第一。

而对于尺寸来说,我们看到精确的尺寸分布图,前三都是B,紧接着是A和C,这个意味着什么大家自己去判断,这里我就不展开了。而通用的尺码里面,M码是最多的,L码比M码稍少,但是相差不明显。

而对于评论的词云,毫无意外地显示,舒服是第一位的,质量也比较重要。

总结

网易严选面向的群体应该是35岁以下的新时代后浪们,而且主打的是物美价廉和性价比。所以这些数据也是这个群体的购买喜好的体现。至于分析的结果,那就是仁者见仁智者见智了,哈哈!

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

!jz_fbzt! 快速回复 !jz_sctz! !jz_fhlb! 按钮
快速回复 返回列表 返回顶部